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ABSTRACT 
The present work aims at applying the ideas on the analysis of improved lumped-parameter model for transient heat 

conduction in a slab with temperature-dependent thermal conductivity. The transient temperature is found to depend 

on various model parameters, namely, Biot number, heat source parameter and time. Polynomial Approximation 

Method (PAM) has been possible to derive a unified relation for the transient thermal behavior of solid (slab and tube) 

with both internal generation and boundary heat flux.  In all the cases, a closed form solution is obtained between 

temperature, Biot number, heat source parameter and time.  

 

An improved lumped parameter model has been adopted through two point Hermite approximations for integrals. For 

linearly temperature-dependent thermal conductivity, it is shown by comparison with numerical solution of the 

original distributed parameter model that the higher order lumped model (H1,1/H0,0 approximation) yields significant 

improvement of average temperature prediction over the classical lumped model. A unified Biot number limit 

present analysis has been compared with earlier numerical and analytical results. A good agreement has been obtained 

between the present prediction and the available results. 

 

KEYWORDS: Hermite approximations, PAM, Temperature-dependent thermal conductivity, Lumped model, 

Nonlinear heat Conduction, Transient heat conduction, Biot number. 

 

     INTRODUCTION 
In this chapter introduces the mechanism of heat transfer known as conduction. In the context of engineering 

applications, this is more likely to be representative of the behavior in solid than fluids. Conduction phenomena may 

be treated as either time-dependent or steady sate. Time-dependent conduction has been simplified to the extreme 

cases of Bi << 1 and Bi >> 1. For the former, the lumped method may be used  and in the latter the semi-infinite 

method. It is worth noting that in both cases these method are used in practical applications in the inverse mode to 

measure heat transfer coefficient from a known temperature-time history. 

 

METHODOLOGY 
According to Lumped Body models we first introduce the spatially averaged dimensionless temperature as follows: 

𝜕𝜃

𝜕𝜏
=

𝜕

𝜕𝜂
(𝜆(𝜃)

𝜕𝜃

𝜕𝜆
),   in 0 < 𝜆 < 1  for  𝜏 > 0 , (1) 

𝜃𝑎𝑣(𝜏) = ∫ 𝜃(𝜂, 𝜏)
1

0
𝑑𝜂                                    (2) 

We operate Eq. (1) by ∫ 𝑑𝜂
1

0
, using the definition of average temperature, Eq. (2), we get  

 
𝑑𝜃𝑎𝑣(𝜏)

𝜕𝜏
= (

𝜆(𝜃)𝜕𝜃

𝜕𝜂
)

𝜂=1
− (

𝜆(𝜃)𝜕𝜃

𝜕𝜂
)

𝜂=0
   (3) 

 

Now, the boundary conditions  
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𝑑𝜃𝑎𝑣(𝜏)

𝜕𝜏
= −𝐵𝑖𝜃(1, 𝜏)                           (4) 

 

Eq. (4) is an equivalent integral-differential formulation of the mathematical model with no approximation involved. 

Supposing that the temperature gradient is sufficiently uniform over the whole spatial solution domain, the classical 

lumped system analysis (CLSA) is based on the assumption that the boundary temperatures can be reasonably well 

approximated by the average temperature, as 

   𝜃(0, 𝜏) ≅ 𝜃(1, 𝜏) ≅  𝜃𝑎𝑣(𝜏),                                                         

 

Which leads to the classical lumped model 

 

                    
𝑑𝜃𝑎𝑣(𝜏)

𝜕𝜏
= −𝐵𝑖𝜃𝑎𝑣(𝜏)                                                                   

And to be solved with the initial condition for the average temperature 

 

                   𝜃𝑎𝑣(0) = 1                                                                                   

 

It can be seen that the classical model shows no influence of the temperature-dependent thermal conductivity.  

 Alhama and Zueco  identified four different kinds of problem that may occur: (i) a heating process with a positive 

temperature-dependent coefficient, k2 > 0; (ii) a heating process with k2 < 0; (iii) a cooling process with k2 > 0 and 

(iv) a cooling process with k2 < 0. They established that the universal mean Biot number limit for applying the lumped 

model can be expressed as a function of the dimensionless number k = ( kmax - kmin)/km, and the kind of process (cooling 

or heating), with km = ( kmax - kmin)/2 

 

In proper choice of dimensionless parameters, the four kinds of problem can be reduced to two kinds of problem: (i) 

 > 0, representing cooling with a positive temperature-dependent coefficient b > 0 or heating with b < 0 and (ii)  < 

0, representing cooling with b < 0 or heating with b > 0. The main difference between Alhama–Zueco’s analysis and 

ours lies in the choice of the reference temperature. While Alhama and Zueco always use the minimum temperature 

Tmin as the reference temperature, we always use the surrounding fluid temperature T as the reference temperature 

whether cooling or heating. For a linearly temperature dependent thermal conductivity. 

          

               𝑘(𝑇) = 𝑘∞{1 + 𝑏(𝑇 − 𝑇∞)}                                                              

 

We have for a cooling process (Ti > T ) with a positive temperature dependent coefficient 

 (b > 0) 

 

   𝜆(𝜃) =
𝑘(𝑇)

𝑘∞
= 1 + 𝑏(𝑇𝑖 − 𝑇∞)𝜃 = 1 + 𝛽𝜃  

 

Thus 𝛽 =  𝑏(𝑇𝑖 − 𝑇∞) > 𝑜. For a cooling process with b < 0, we have 

           

  𝜆(𝜃) = 1 + 𝑏(𝑇𝑖 − 𝑇∞)𝜃 = 1 + 𝛽𝜃 

 

with  𝛽 =  𝑏(𝑇𝑖 − 𝑇∞) < 𝑜. For a heating process (𝑇𝑖 < 𝑇∞) with b > 0, we have 

 

  𝜆(𝜃) = 1 + 𝑏(𝑇𝑖 − 𝑇∞)𝜃 = 1 + 𝛽𝜃  
 

with  𝛽 = 𝑏(𝑇𝑖 − 𝑇∞) > 𝑜. 

 

It can be seen that the four kinds of problem identified by Alhama and Zueco [2] can be represented conveniently by 

only one dimensionless parameter 𝛽, with 𝛽 > 0 representing cooling with b > 0 or  

heating with b < 0, and 𝛽 < 0 representing cooling with b < 0 or heating with b > 0. 

We proceed to examine the example problems given by Alhama and Zueco. 
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Problem 1. 𝑇𝑖 = 1, 𝑇∞ = 0, k(T) = 0.9+0.2T, kmin = 0.9 , kmax = 1.1 , km = 1, k = 0.2  

 

 By our analysis,  = T,  i = 1,   = 0, 

   𝜆() = 𝑘𝑇/k = 1+(2/9),   = 2/9      

 

Problem 2. 𝑇𝑖 = 1, 𝑇∞ = 0, k(T) = 1.8+0.4T, kmin = 1.8 , kmax = 2.2 , km = 2,  k = 0.2  

 

By our analysis,  = T,  i = 1,   = 0,   𝜆() = 𝑘𝑇/k = 1+(2/9),   = 2/9 

 

Problem 3. 𝑇𝑖 = 10, 𝑇∞ = 0,k(T) = 0.9+0.02T, kmin = 0.9, kmax = 1.1 , km = 1,k = 0.2  

 

 By our analysis, = T/10,  i = 1,   = 0, 

 𝜆() = 𝑘𝑇/k = 1+(2/9),   = 2/9 

 

The difference between Alhama-Zuecos and our analysis is shown when examining the heating processes with a 

positive temperature-dependent coefficient (k2 > 0  or  b > 0). 

 

Problem 4. 𝑇𝑖 = 0,𝑇∞ = 1, k(T) = 0.9+0.2T, kmin = 0.9 ,  kmax = 1.1 , km = 1,  k = 0.2  

 

 By our analysis,  = (T – 1)/(-1),  i = 1,   = 0,    

  𝜆() =
𝑘𝑇

k
=

0.9+0.2(−θ+1)

1.1
= 1 −

2

11
𝜃, 

Thus  = 2/11 

 

Problem 5. 𝑇𝑖 = 0, 𝑇∞ = 1, k(T) = 1.8+0.4T, kmin = 1.8 , kmax = 2.2 , km = 2,  k = 0.2  

 

 By our analysis,  = (T – 1)/(-1),  i = 1,   = 0,    

   𝜆() =
𝑘𝑇

k
=

1.8+0.4(−θ+1)

2.2
= 1 −

2

11
𝜃, 

Thus  = 2/11 

 

Problem 6. 𝑇𝑖 = 0, 𝑇∞ = 10, k(T) = 0.9+0.02T, kmin = 0.9, kmax = 1.1, km = 1,k = 0.2  

 By our analysis,  = (T – 10)/(-10),  i = 1,   = 0,    

                 𝜆() =
𝑘𝑇

k
=

0.9+0.02(−θ+10)

2.2
= 1 −

2

11
𝜃, 

 

                  Thus  = 2/11 

 

It can be seen that problems 1-3 reduce to a same dimensionless problem with  = 2/9 and problem 4-6 reduce to 

another dimensionless problem with  = -2/11 

 

RESULT AND DISCUSSION 
The solutions of classical and improved lumped models are shown in tabular and graphical forms in comparison with 

a reference finite difference solution of the original distributed model, The initial boundary value problem defined by 

using an implicit finite difference method, with a 201 nodes mesh in spatial discretization and a dimensionless time 

step of 0.00001 for all cases. Different values of the Biot number Bi and the parameter b are chosen so as to assess 

accuracy of the solutions given by lumped models. 

 

In Table4.1, it is presented a comparison of the dimensionless average temperatures obtained by lumped models and 

the reference finite difference solution of the original distributed parameter model at different values of time, for Bi = 

1.0 and  =1.0. As can be seen, the classical lumped model gives an error of 0.0681 at  = 1.0, while the H0,0/H0,0 

model gives an error of 0.0137 at  = 1.0, and the H1,1/H0.0 model yields a maximum error less than 0.005 for all time 

values. Fig.4.1 shows the comparison of the dimensionless average temperatures for Bi =2.5 and = 0.5. It can be seen 
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that the solution give by the higher order improved lumped model (H1,1/H0,0) agrees quite well with the finite difference 

solution. 

 
Table 1 Comparison of lumped model against finite different solution average temperature 𝜽𝒂𝒗(𝝉) 

at different value of time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

CONCLUSION 
The improved lumped parameter models are presented for transient heat conduction in a slab with cubicly temperature-

dependent thermal conductivity and subject to convective cooling or heating. Improved lumped models are obtained 

through two point Hermite approximations for integrals. For linearly temperature-dependent thermal conductivity, it 

is shown by comparison with numerical solution of the original distributed parameter model that the higher order 

lumped model (H1,1/H0,0 approximation) yields significant improvement of average temperature prediction over the 

classical lumped model. It is shown that the maximum relative error of the dimensionless average temperature is 

influenced predominantly by the Biot number. A unified Biot number limit is obtained as a function of the linear 

dependence coefficient , Bilimit = 0.523 + 1.078 for - 0.6     0.8. The lumped model H1,1/H0,0 is expected to yield 

maximum normalized error less 0.01 for Bi < Bilimit, for a given .   

 

 FD 

solution 

Bi = 1.0 

CLSA 

 = 1.0 

H0,0/H0,0 H1,1/H0,0 

0.1 0.9150 0.9048 0.9157 0.9190 

0.2 0.8406 0.8187 0.8389 0.8450 

0.3 0.7730 0.7408 0.7689 0.7774 

0.4 0.7113 0.6703 0.7050 0.7156 

0.5 0.6548 0.6065 0.6466 0.6589 

0.6 0.6031 0.5488 0.5934 0.6070 

0.7 0.5557 0.4966 0.5447 0.5595 

0.8 0.5123 0.4493 0.5002 0.5159 

0.9 0.4725 0.4066 0.4595 0.4758 

1.0 0.4359 0.3679 0.4222 0.4391 

2.0 0.1985 0.1353 0.1838 0.1997 

3.0 0.0925 0.0498 0.0813 0.0926 

4.0 0.0436 0.0183 0.0363 0.0434 

5.0 0.0207 0.0067 0.0163 0.0204 
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